THE FOLLOWING RESOURCE MAY NOT COVER ALL FINAL EXAM MATERIAL

43a. Convert 45 m/s to km/hr.

46a. How many moles of CH₄ are in 48.2 g of this compound?

46b. How many molecules of CH₄ are in 48.2 g of this compound?

47. The combustion of propane (C₃H₈) in the presence of excess oxygen yields CO₂ and H₂O:

 $\mathrm{C_{3}H_8}\left(g\right)\ +\ 5\ \mathrm{O_2}\left(g\right)\ \rightarrow \quad 3\mathrm{CO_2}\left(g\right)\ +\ 4\ \mathrm{H_2O}\left(g\right)$

a. How many mol of CO₂ are produced when 2.5 mol of O₂ are consumed in their reaction?

b. How many grams of H₂O are produced by the combustion of 4.2 mol of C₃H₈?

- 48. Classify the following reactions as combination, combustion, decomposition, single replacement, neutralization, precipitation:
- 49. A 36.3 mL aliquot of 0.0529 M H₂SO₄ (aq) is to be titrated with 0.0411 M NaOH (aq). What volume (mL) of base will it take to reach the equivalence point?

50. Write abbreviated configurations (noble gas core) for the following:

a. K	
b. Cu	
c. Ge	
d. Mn ²⁺	

51. Draw Lewis structures for the following, showing any reasonable resonance structures where applicable:

a. NH3

b. XeF₄

c. HCO₂-

52. For each of the following Lewis structures, fill in the information required:

Is the molecule polar or nonpolar?

53a. A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. What is the final pressure of the gas in atm?

53b. What is the pressure, in atm, of a sample of CH₄ gas (6.022 g) in a 30.0 L vessel at 402 K?